4.7 Article

Immune microenvironment of experimental rat C6 gliomas resembles human glioblastomas

Journal

SCIENTIFIC REPORTS
Volume 7, Issue -, Pages -

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/s41598-017-17752-w

Keywords

-

Funding

  1. National Science Center [2012/04/A/NZ3/00630]
  2. European Union - European Regional development Fund within Operational Programme Innovative Economy

Ask authors/readers for more resources

Glioblastoma (GBM) is the most aggressive primary brain tumor, with ineffective anti-tumor responses and a poor prognosis despite aggressive treatments. GBM immune microenvironment is heterogenous and activation of specific immune populations in GBM is not fully characterized. Reliable animal models are critical for defining mechanisms of anti-tumor immunity. First we analyzed the immune subpopulations present in rat C6 gliomas. Using flow cytometry we determined kinetics of infiltration of myeloid cells and T lymphocytes into glioma-bearing brains. We found significant increases of the amoeboid, pro-tumorigenic microglia/macrophages, T helper (Th) and T regulatory (Treg) cells in tumor-bearing brains, and rare infiltrating T cytotoxic (Tc) cells. Transcriptomic analyses of glioma-bearing hemispheres revealed overexpression of invasion and immunosuppression-related genes, reflecting the immunosuppressive microenvironment. Microglia, sorted as CD11b(+) CD45(low) cells from gliomas, displayed the pro-invasive and immunosuppressive type of activation. Accumulation of Th and Treg cells combined with the reduced presence of Tc lymphocytes in rat gliomas may result in the lack of effective anti-tumor responses. Transcriptional profiles of CD11b+ cells and composition of immune infiltrates in C6 gliomas indicate that rat C6 gliomas employ similar immune system evasion strategies as human GBMs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available