4.7 Article

Design of Carbon Dots Photoluminescence through Organo-Functional Silane Grafting for Solid-State Emitting Devices

Journal

SCIENTIFIC REPORTS
Volume 7, Issue -, Pages -

Publisher

NATURE PORTFOLIO
DOI: 10.1038/s41598-017-05540-5

Keywords

-

Funding

  1. SORETA
  2. Japan Society of Promotion of Science (JSPS)
  3. Mi ADATTI E L'ABBATTI-INSTM-Regione Lombardia [INSTMRL6]
  4. Bando Capitale Umano ad Alta Qualificazione annualita [CRP 30 L.R. 7/2007]

Ask authors/readers for more resources

Advanced optical applications of fluorescent carbon dots (C-dots) require highly integrated host-guest solid-state materials with a careful design of C-dots - matrix interface to control the optical response. We have developed a new synthesis based on the grafting of an organo-functional silane (3-glycidyloxypropyltrimethoxysilane, GPTMS) on amino-functionalized C-dots, which enables the fabrication of highly fluorescent organosilica-based hybrid organic-inorganic films through sol-gel process. The GPTMS grafting onto C-dots has been achieved via an epoxy-amine reaction under controlled conditions. Besides providing an efficient strategy to embed C-dots into a hybrid solid-state material, the modification of C-dots surface by GPTMS allows tuning their photoluminescence properties and gives rise to an additional, intense emission around 490 nm. Photoluminescence spectra reveal an interaction between C-dots surface and the polymeric chains which are locally formed by GPTMS polymerization. The present method is a step forward to the development of a surface modification technology aimed at controlling C-dots host-guest systems at the nanoscale.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available