4.7 Article

Silver nanoparticle loaded collagen/chitosan scaffolds promote wound healing via regulating fibroblast migration and macrophage activation

Journal

SCIENTIFIC REPORTS
Volume 7, Issue -, Pages -

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/s41598-017-10481-0

Keywords

-

Funding

  1. National Natural Science Foundation of China [81601681]
  2. National Key Research Project of China [2016YFC1100800, 2016YFC1100803]

Ask authors/readers for more resources

Treatment of full-thickness skin defects poses significant clinical challenges including risk of infection and severe scaring. Silver nanoparticle (NAg), an effective antimicrobial agent, has provided a promising therapeutic method for burn wounds. However, the detailed mechanism remains unknown. Hence, we constructed a metallic nanosilver particles-collagen/chitosan hybrid scaffold (NAg-CCS) and investigated its potential effects on wound healing. In vitro scratch assay, immunofluorescence staining and antibacterial activity of the scaffold were all studied. In vivo NAg-CCS was applied in full-thickness skin defects in Sprague-Dawley (SD) rats and the therapeutic effects of treatment were evaluated. The results showed that NAg at a concentration of 10 ppm accelerated the migration of fibroblasts with an increase in expression of alpha-smooth muscle actin (alpha-SMA). Furthermore, in vivo studies showed increased levels of pro-inflammatory and scar-related factors as well as alpha-SMA, while markers for macrophage activation were up-regulated. On day 60 post transplantation of ultra-thin skin graft, the regenerated skin by NAg-CCS had a similar structure to normal skin. In summary, we demonstrated that NAg-CCS was bactericidal, anti-inflammatory and promoted wound healing potentially by regulating fibroblast migration and macrophage activation, making it an ideal dermal substitute for wound regeneration.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available