4.7 Article

Atomic-Layer-Deposition Assisted Formation of Wafer-Scale Double-Layer Metal Nanoparticles with Tunable Nanogap for Surface-Enhanced Raman Scattering

Journal

SCIENTIFIC REPORTS
Volume 7, Issue -, Pages -

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/s41598-017-05533-4

Keywords

-

Funding

  1. Natural Science Foundation of China and Jiangsu Province [51571111, BK2016230]
  2. State Key Program for Basic Research of China [2015CB921203]
  3. Fundamental Research Funds for the Central Universities [021314380075]

Ask authors/readers for more resources

A simple high-throughput approach is presented in this work to fabricate the Au nanoparticles (NPs)/nanogap/Au NPs structure for surface enhanced Raman scattering (SERS). This plasmonic nanostructure can be prepared feasibly by the combination of rapid thermal annealing (RTA), atomic layer deposition (ALD) and chemical etching process. The nanogap size between Au NPs can be easily and precisely tuned to nanometer scale by adjusting the thickness of sacrificial ALD Al2O3 layer. Finite-difference time-domain (FDTD) simulation data indicate that most of enhanced field locates at Au NPs nanogap area. Moreover, Au NPs/nanogap/Au NPs structure with smaller gap exhibits the larger electromagnetic field. Experimental results agree well with FDTD simulation data, the plasmonic structure with smaller nanogap size has a stronger Raman intensity. There is highly strong plasmonic coupling in the Au nanogap, so that a great SERS effect is obtained when detecting methylene blue (MB) molecules with an enhancement factor (EF) over 10(7). Furthermore, this plasmonic nanostructure can be designed on large area with high density and high intensity hot spots. This strategy of producing nanoscale metal gap on large area has significant implications for ultrasensitive Raman detection and practical SERS application.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available