4.7 Article

Te-based chalcogenide materials for selector applications

Journal

SCIENTIFIC REPORTS
Volume 7, Issue -, Pages -

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/s41598-017-08251-z

Keywords

-

Ask authors/readers for more resources

The implementation of dense, one-selector one-resistor (1S1R), resistive switching memory arrays, can be achieved with an appropriate selector for correct information storage and retrieval. Ovonic threshold switches (OTS) based on chalcogenide materials are a strong candidate, but their low thermal stability is one of the key factors that prevents rapid adoption by emerging resistive switching memory technologies. A previously developed map for phase change materials is expanded and improved for OTS materials. Selected materials from different areas of the map, belonging to binary Ge-Te and Si-Te systems, are explored. Several routes, including Si doping and reduction of Te amount, are used to increase the crystallization temperature. Selector devices, with areas as small as 55 x 55 nm(2), were electrically assessed. Sub-threshold conduction models, based on Poole-Frenkel conduction mechanism, are applied to fresh samples in order to extract as-processed material parameters, such as trap height and density of defects, tailoring of which could be an important element for designing a suitable OTS material. Finally, a glass transition temperature estimation model is applied to Te-based materials in order to predict materials that might have the required thermal stability. A lower average number of p-electrons is correlated with a good thermal stability.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available