4.7 Article

The receptor genes PfBMPR1B and PfBAMBI are involved in regulating shell biomineralization in the pearl oyster Pinctada fucata

Journal

SCIENTIFIC REPORTS
Volume 7, Issue -, Pages -

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/s41598-017-10011-y

Keywords

-

Funding

  1. National Natural Science Foundation of China [31372508, 31572594]
  2. National Basic Research Program of China [2010CB126405]

Ask authors/readers for more resources

Mounting evidence suggests that TGF beta/BMP signaling pathway is most likely involved in shell biomineralization in molluscs, but the function of pathway receptors is poorly studied. Here, we cloned and identified two homologous BMP receptor genes, PfBMPR1B and PfBAMBI, from the pearl oyster Pinctada fucata. Real-time quantitative PCR and in situ hybridization revealed that these genes were expressed in mantle edge and pallial, specifically located at the outer epithelia. Knockdown of PfBMPR1B by RNA interference ( RNAi) significantly decreased the expression levels of matrix protein ( MP) genes and induced the abnormal ultrastructure of prismatic and nacreous layers. Conversely, knockdown of PfBAMBI significantly increased the expression levels of a portion of MP genes and induced the overgrowth of nacreous layer crystals. In the RNAi and shell notching experiments, MP gene expressions were competitively regulated by PfBMPR1B and PfBAMBI. In addition, the receptor inhibitor LDN193189 reduced the expression levels of MP genes in mantle primary cells and larvae, and induced abnormal D-shaped shell formation during larval development. Collectively, these results clearly show that PfBMPR1B and PfBAMBI are involved in regulating shell biomineralization in P. fucata. Our study therefore provides the direct evidence that BMP receptors participate in mollusc biomineralization.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available