4.7 Article

Effects of prey of different nutrient quality on elemental nutrient budgets in Noctiluca scintillans

Journal

SCIENTIFIC REPORTS
Volume 7, Issue -, Pages -

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/s41598-017-05991-w

Keywords

-

Funding

  1. Hong Kong Research Grants Council [661912, 661813]
  2. National Key Scientific Research Projects of China [2015CB954003]
  3. State Key Laboratory in Marine Pollution (SKLMP) Seed Collaborative Research Fund [SKLMP/SCRF/0006]

Ask authors/readers for more resources

Noctiluca scintillans (Noctiluca) is a cosmopolitan red tide forming heterotrophic dinoflagellate. In this study, we investigated its ingestion, elemental growth yield and excretion when supplied with different quality food (nutrient-balanced, N-limited and P-limited). Total cellular elemental ratios of Noctiluca were nearly homeostatic, but the ratio of its intracellular NH4+ and PO43- was weakly regulated. Noctiluca thus seems able to differentially allocate N and P to organic and inorganic pools to maintain overall homeostasis, and it regulated its internal N more strongly and efficiently than P. The latter was substantiated by its comparatively stable C:N ratio and compensatory feeding on N-limited prey. Using both starvation experiments and mass balance models, it was found that excretion of C, N, and P by Noctiluca is highly affected by prey nutritional quality. However, based on modeling results, nutrients seem efficiently retained in actively feeding Noctiluca for reproduction rather than directly released as was shown experimentally in starved cells. Moreover, actively feeding Noctiluca tend to retain P and preferentially release N, highlighting its susceptible to P-limitation. Recycling of N and P by Noctiluca may supply substantial nutrients for phytoplankton growth, especially following bloom senescence.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available