4.7 Article

Patients with IgG1-anti-red blood cell autoantibodies show aberrant Fc-glycosylation

Journal

SCIENTIFIC REPORTS
Volume 7, Issue -, Pages -

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/s41598-017-08654-y

Keywords

-

Funding

  1. LSBR grant [1229]
  2. European Union (Seventh Framework Programme HighGlycan project) [278535]

Ask authors/readers for more resources

Autoimmune hemolytic anemia (AIHA) is a potentially severe disease in which red blood cells (RBC) are destroyed by IgG anti-RBC autoantibodies which can lead to hemolysis. We recently found IgG Fc-glycosylation towards platelet and RBC alloantigens to be skewed towards decreased fucosylation, increased galactosylation and sialylation. The lowered core-fucosylation increases the affinity of the pathogenic alloantibodies to Fc gamma RIIIa/b, and hence RBC destruction. It is known that in autoimmune diseases plasma IgG1 galactosylation and sialylation are lowered, but Fc-glycosylation of RBC-specific autoantibodies has never been thoroughly analyzed. We investigated by mass spectrometry the N-linked RBC autoantibody and plasma IgG1 Fc-glycosylation in relation to occurrence of hemolysis for 103 patients with a positive direct antiglobulin test (DAT). We observed that total IgG1 purified from plasma of patients with RBC-bound antibodies showed significantly decreased galactosylation and sialylation levels compared to healthy controls, similar to what previously has been shown for other autoimmune diseases. The anti-RBC-autoantibodies showed a profile with even lower galactosylation, but higher sialylation and lower bisection levels. In contrast to alloantibodies against RBCs, RBC-bound IgG1 Fc-fucosylation was not different between healthy controls and patients. Analysis of anti-RBC Fc-glycoprofiles suggested that lower bisection and higher galactosylation associate with lower Hb levels.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available