4.7 Article

Tonoplast-localized nitrate uptake transporters involved in vacuolar nitrate efflux and reallocation in Arabidopsis

Journal

SCIENTIFIC REPORTS
Volume 7, Issue -, Pages -

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/s41598-017-06744-5

Keywords

-

Funding

  1. National Science Foundation of China [31421093, 31325003]
  2. Chinese Academy of Sciences [XDPB0402]

Ask authors/readers for more resources

A great proportion of nitrate taken up by plants is stored in vacuoles. Vacuolar nitrate accumulation and release is of great importance to nitrate reallocation and efficient utilization. However, how plants mediate nitrate efflux from vacuoles to cytoplasm is largely unknown. The current study identified NPF5.11, NPF5.12 and NPF5.16 as vacuolar nitrate efflux transporters in Arabidopsis. Histochemical analysis showed that NPF5.11, NPF5.12 and NPF5.16 were expressed preferentially in root pericycle cells and xylem parenchyma cells, and further analysis showed that these proteins were tonoplast-localized. Functional characterization using cRNA-injected Xenopus laevis oocytes showed that NPF5.11, NPF5.12 and NPF5.16 were low-affinity, pH-dependent nitrate uptake transporters. In npf5.11 npf5.12 npf5.16 triple mutant lines, more root-fed (NO3-)-N-15 was translocated to shoots compared to the wild type control. In the NPF5.12 overexpression lines, proportionally less nitrate was maintained in roots. These data together suggested that NPF5.11, NPF5.12 and NPF5.16 might function to uptake nitrate from vacuoles into cytosol, thus serving as important players to modulate nitrate allocation between roots and shoots.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available