4.3 Article

Analysis of neural progenitors from embryogenesis to juvenile adult in Xenopus laevis reveals biphasic neurogenesis and continuous lengthening of the cell cycle

Journal

BIOLOGY OPEN
Volume 4, Issue 12, Pages 1772-1781

Publisher

COMPANY OF BIOLOGISTS LTD
DOI: 10.1242/bio.013391

Keywords

Birth dating; Cell cycle; Neural progenitor

Categories

Funding

  1. Biotechnology and Biological Sciences Research Council (BBSRC) [BB/E003044/1]
  2. Wellcome Trust [WT090868]
  3. Biotechnology and Biological Sciences Research Council [BB/E003044/1] Funding Source: researchfish
  4. BBSRC [BB/E003044/1] Funding Source: UKRI

Ask authors/readers for more resources

Xenopus laevis is a prominent model system for studying neural development, but our understanding of the long-term temporal dynamics of neurogenesis remains incomplete. Here, we present the first continuous description of neurogenesis in X. laevis, covering the entire period of development from the specification of neural ectoderm during gastrulation to juvenile frog. We have used molecular markers to identify progenitors and neurons, short-term bromodeoxyuridine (BrdU) incorporation to map the generation of newborn neurons and dual pulse S-phase labelling to characterise changes in their cell cycle length. Our study revealed the persistence of Sox3-positive progenitor cells from the earliest stages of neural development through to the juvenile adult. Two periods of intense neuronal generation were observed, confirming the existence of primary and secondary waves of neurogenesis, punctuated by a period of quiescence before metamorphosis and culminating in another period of quiescence in the young adult. Analysis of multiple parameters indicates that neural progenitors alternate between global phases of differentiation and amplification and that, regardless of their behaviour, their cell cycle lengthens monotonically during development, at least at the population level.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available