4.7 Article

Soft Zr-doped TiO2 Nanofibrous Membranes with Enhanced Photocatalytic Activity for Water Purification

Journal

SCIENTIFIC REPORTS
Volume 7, Issue -, Pages -

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/s41598-017-01969-w

Keywords

-

Funding

  1. National Natural Science Foundation of China [51673037, 51473030]
  2. 111 Project Biomedical Textile Materials Science and Technology, China [B07024]

Ask authors/readers for more resources

Self-standing photocatalytic membranes constructed from TiO2 nanofibers hold great promise in environmental remediation; however, challenges still remained for the poor mechanical properties of polycrystalline TiO2 nanofibers. Herein, soft Zr-doped TiO2 (TZ) nanofibrous membranes with robust mechanical properties and enhanced photocatalytic activity were fabricated via electrospinning technique. The Zr4+ incorporation could effectively inhibit the grain growth and reduce the surface defects and breaking point of TiO2 nanofiber. The as-prepared TZ membranes were composed of well-interconnected nanofibers with a high aspect ratios, small grain size and pore size, which exhibited good tensile strength (1.32 MPa) and showed no obvious damage after 200 cycles of bending to a radius of 2 mm. A plausible bending deformation mechanism of the soft TZ membranes was proposed from microscopic single nanofiber to macroscopical membranes. Moreover, the resultant TZ membranes displayed better photocatalytic performance for methylene blue degradation compared to a commercial catalyst (P25), including high degradation degree of 95.4% within 30 min, good reusability in 5 cycles, and easiness of recycling. The successful preparation of such fascinating materials may open up new avenues for the design and development of soft TiO2-based membranes for various application.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available