4.7 Article

Selective orbital reconstruction in tetragonal FeS: A density functional dynamical mean-field theory study

Journal

SCIENTIFIC REPORTS
Volume 7, Issue -, Pages -

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/srep46439

Keywords

-

Funding

  1. CNPq [307487/2014-8]
  2. DFG [SPP 1415]
  3. UK Research Council [EP/M50631X/1]

Ask authors/readers for more resources

Transport properties of tetragonal iron monosulfide, mackinawite, show a range of complex features. Semiconductive behavior and proximity to metallic states with nodal superconductivity mark this d-band system as unconventional quantum material. Here, we use the density functional dynamical mean-field theory (DFDMFT) scheme to comprehensively explain why tetragonal FeS shows both semiconducting and metallic responses in contrast to tetragonal FeSe which is a pseudogaped metal above the superconducting transition temperature. Within local-density-approximation plus dynamical mean-field theory (LDA+ DMFT) we characterize its paramagnetic insulating and metallic phases, showing the proximity of mackinawite to selective Mott localization. We report the coexistence of pseudogaped and anisotropic Dirac-like electronic dispersion at the border of the Mott transition. These findings announce a new understanding of many-particle physics in quantum materials with coexisting Dirac-fermions and pseudogaped electronic states at low energies. Based on our results we propose that in electron-doped FeS substantial changes would be seen when the metallic regime was tuned towards an electronic state that hosts unconventional superconductivity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available