4.7 Article

Successive extraction of As(V), Cu(II) and P(V) ions from water using spent coffee powder as renewable bioadsorbents

Journal

SCIENTIFIC REPORTS
Volume 7, Issue -, Pages -

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/srep42881

Keywords

-

Funding

  1. Department of Chemistry
  2. National University of Singapore
  3. China Scholarship Council

Ask authors/readers for more resources

For the first time, renewable and easy accessible pre-bleached spent coffee powder coated with polyethylenimine (PEI) and ferric ions (Coffee-PEI-Fe) was used for the successive adsorption of As(V), Cu(II) and P(V) ions from spiked water samples. Fully characterized coffee-PEI-Fe was employed for batch mode experiments. Kinetic regression analysis showed that the adsorption processes of As(V) and P(V) anions follows a pseudo-second-order model, while the adsorption of Cu(II) ions fit with a pseudo-first-order model. The maximum adsorption capacities estimated by Langmuir model for As(V), Cu(II) and P(V) ions were 83.3, 200.1, and 50.2 mg/g, respectively. The simulated results revealed that the internal diffusion is the rate-determining step for the adsorptions of As(V) and Cu(II) ions, while film diffusion is the mass transfer resistance for the adsorption of P(V) ions on the surface of coffee-PEI-Fe. The successive adsorptions of adsorbates were achieved through electrostatic attraction between adsorbent surface and adsorbates. The dynamic column adsorption behavior of the adsorbent was described by Thomas model, which showed a good agreement with the experimental values (q(exp)). The results presented in this paper could be used for developing efficient adsorbent from renewable materials for water purification.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available