4.7 Article

Inhibition of PDGFR signaling prevents muscular fatty infiltration after rotator cuff tear in mice

Journal

SCIENTIFIC REPORTS
Volume 7, Issue -, Pages -

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/srep41552

Keywords

-

Funding

  1. MEXT KAKENHI [24390358]
  2. Grants-in-Aid for Scientific Research [24390358, 16K10836, 26462473] Funding Source: KAKEN

Ask authors/readers for more resources

Fatty infiltration in muscle is often observed in patients with sizable rotator cuff tear (RCT) and is thought to be an irreversible event that significantly compromises muscle plasticity and contraction strength. These changes in the mechanical properties of the affected muscle render surgical repair of RCT highly formidable. Therefore, it is important to learn more about the pathology of fatty infiltration to prevent this undesired condition. In the present study, we aimed to generate a mouse model that can reliably recapitulate some of the important characteristics of muscular fatty infiltration after RCT in humans. We found that fatty infiltration can be efficiently induced by a combination of the following procedures: denervation of the suprascapular nerve, transection of the rotator cuff tendon, and resection of the humeral head. Using this model, we found that platelet-derived growth factor receptor-alpha (PDGFR alpha)-positive mesenchymal stem cells are induced after this intervention and that inhibition of PDGFR signaling by imatinib treatment can significantly suppress fatty infiltration. Taken together, the present study presents a reliable fatty infiltration mouse model and suggests a key role for PDGFR alpha-positive mesenchymal stem cells in the process of fatty infiltration after RCT in humans.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available