4.7 Article

Electrohydrodynamic-assisted Assembly of Hierarchically Structured, 3D Crumpled Nanostructures for Efficient Solar Conversions

Journal

SCIENTIFIC REPORTS
Volume 6, Issue -, Pages -

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/srep38701

Keywords

-

Funding

  1. Doctoral New Investigator Award from ACS Petroleum Fund [ACS PRF 54717-DNI10]
  2. Ministry of Science and Technology of Taiwan [NSC 101-2112-M-009-021-MY3]
  3. Center for Interdisciplinary Science under the MOE-ATU project for NCTU
  4. Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231, 3192, 3715]
  5. NASA MIRO Center [NNX15AQ01A]
  6. NASA [NNX15AQ01A, 801189] Funding Source: Federal RePORTER

Ask authors/readers for more resources

The tantalizing prospect of harnessing the unique properties of graphene crumpled nanostructures continues to fuel tremendous interest in energy storage and harvesting applications. However, the paper ball-like, hard texture, and closed-sphere morphology of current 3D graphitic nanostructure production not only constricts the conductive pathways but also limits the accessible surface area. Here, we report new insights into electrohydrodynamically-generated droplets as colloidal nanoreactors in that the stimuli-responsive nature of reduced graphene oxide can lead to the formation of crumpled nanostructures with a combination of open structures and doubly curved, saddle-shaped edges. In particular, the crumpled nanostructures dynamically adapt to non-spherical, polyhedral shapes under continuous deposition, ultimately assembling into foam-like microstructures with a highly accessible surface area and spatially interconnected transport pathways. The implementation of such crumpled nanostructures as three-dimensional rear contacts for solar conversion applications realize benefits of a high aspect ratio, electrically addressable and energetically favorable interfaces, and substantial enhancement of both short-circuit currents and fill-factors compared to those made of planar graphene counterparts. Further, the 3D crumpled nanostructures may shed lights onto the development of effective electrocatalytic electrodes due to their open structure that simultaneously allows for efficient water flow and hydrogen escape.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available