4.7 Article

TREM-2 promotes acquired cholesteatoma-induced bone destruction by modulating TLR4 signaling pathway and osteoclasts activation

Journal

SCIENTIFIC REPORTS
Volume 6, Issue -, Pages -

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/srep38761

Keywords

-

Funding

  1. NSFC (National Natural Science Foundation of China) [81670921, 81600794, 81371082]

Ask authors/readers for more resources

Triggering receptor expressed on myeloid cells (TREM) has been broadly studied in inflammatory disease. However, the expression and function of TREM-2 remain undiscovered in acquired cholesteatoma. The expression of TREM-2 was significantly higher in human acquired cholesteatoma than in normal skin from the external auditory canal, and its expression level was positively correlated with the severity of bone destruction. Furthermore, TREM-2 was mainly expressed on dendritic cells (DCs). In human acquired cholesteatoma, the expression of proinflammatory cytokines (IL-1 beta, TNF-alpha and IL-6) and matrix metalloproteinases (MMP-2, MMP-8 and MMP-9) were up-regulated, and their expression levels were positively correlated with TREM-2 expression. Osteoclasts were activated in human acquired cholesteatoma. In an animal model, TREM-2 was up-regulated in mice with experimentally acquired cholesteatoma. TREM-2 deficiency impaired the maturation of experimentally acquired cholesteatoma and protected against bone destruction induced by experimentally acquired cholesteatoma. Additional data showed that TREM-2 up-regulated IL-1 beta and IL-6 expression via TLR4 instead of the TLR2 signaling pathway and promoted MMP-2 and MMP-8 secretion and osteoclast activation in experimentally acquired cholesteatoma. Therefore, TREM-2 might enhance acquired cholesteatoma-induced bone destruction by amplifying the inflammatory response via TLR4 signaling pathways and promoting MMP secretion and osteoclast activation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available