4.7 Article

Fabrication of Long-Term Underwater Superoleophobic Al Surfaces and Application on Underwater Lossless Manipulation of Non-Polar Organic Liquids

Journal

SCIENTIFIC REPORTS
Volume 6, Issue -, Pages -

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/srep31818

Keywords

-

Funding

  1. National Science Foundation of China (NSFC) [51275072, 51305060]
  2. Fundamental Research Funds for the Central Universities [DUT15RC(3)066]

Ask authors/readers for more resources

Underwater superoleophobic surfaces have different applications in fields from oil/water separation to underwater lossless manipulation. This kind of surfaces can be easily transformed from superhydrophilic surfaces in air, which means the stability of superhydrophilicity in air determines the stability of underwater superoleophobicity. However, superhydrophilic surfaces fabricated by some existing methods easily become hydrophobic or superhydrophobic in air with time. Here, a facile method combined with electrochemical etching and boiling water immersion is developed to fabricate long-term underwater superoleophobic surfaces. The surface morphologies and chemical compositions are investigated. The results show that the electrochemically etched and boiling-water immersed Al surfaces have excellent long-term superhydrophilicity in air for over 1 year and boehmite plays an important role in maintaining long-term stability of wettability. Based on the fabricated underwater superoleophobic surfaces, a special method and device were developed to realize the underwater lossless manipulation of immiscible organic liquid droplets with a large volume. The capture and release of liquid droplets were realized by controlling the resultant force of the applied driving pressure, gravity and buoyancy. The research has potential application in research-fields such as the transfer of valuable reagents, accurate control of miniature chemical reactions, droplet-based reactors, and eliminates contamination of manipulator components.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available