4.7 Article

High-mechanical-frequency characteristics of optomechanical crystal cavity with coupling waveguide

Journal

SCIENTIFIC REPORTS
Volume 6, Issue -, Pages -

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/srep34160

Keywords

-

Funding

  1. National Basic Research Program of China [2013CBA01704, 2013CB328704]
  2. National Natural Science Foundation of China [61307068]
  3. Opened Fund of the State Key Laboratory on Integrated Optoelectronics [IOSKL2015KF01]

Ask authors/readers for more resources

Optomechanical crystals have attracted great attention recently for their ability to realize strong photon-phonon interaction in cavity optomechanical systems. By far, the operation of cavity optomechanical systems with high mechanical frequency has to employ tapered fibres or one-sided waveguides with circulators to couple the light into and out of the cavities, which hinders their on-chip applications. Here, we demonstrate larger-centre-hole nanobeam structures with on-chip transmission-coupling waveguide. The measured mechanical frequency is up to 4.47 GHz, with a high mechanical Q-factor of 1.4 x 10(3) in the ambient environment. The corresponding optomechanical coupling rate is calculated and measured to be 836 kHz and 1.2 MHz, respectively, while the effective mass is estimated to be 136 fg. With the transmission waveguide coupled structure and a small footprint of 3.4 mu m(2), this simple cavity can be directly used as functional components or integrated with other on-chip devices in future practical applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available