4.7 Article

Rate-dependent interface capture beyond the coffee-ring effect

Journal

SCIENTIFIC REPORTS
Volume 6, Issue -, Pages -

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/srep24628

Keywords

-

Funding

  1. National Nature Science Foundation [21003132, 21073203, 21121001]
  2. Strategic Priority Research Program of the Chinese Academy of Sciences [XDA09020000]

Ask authors/readers for more resources

The mechanism of droplet drying is a widely concerned fundamental issue since controlling the deposition morphology of droplet has significant influence on printing, biology pattern, self-assembling and other solution-based devices fabrication. Here we reveal a striking different kinetics-controlled deposition regime beyond the ubiquitous coffee-ring effect that suspended particles tend to kinetically accumulate at the air-liquid interface and deposit uniformly. As the interface shrinkage rate exceeds the particle average diffusion rate, particles in vertical evaporation flow will be captured by the descending surface, producing surface particle jam and forming viscous quasi-solid layer, which dramatically prevents the trapped particles from being transported to drop edge and results in uniform deposition. This simple, robust drying regime will provide a versatile strategy to control the droplet deposition morphology, and a novel direction of interface assembling for fabricating superlattices and high quality photonic crystal patterns.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available