4.7 Article

Interface induce growth of intermediate layer for bandgap engineering insights into photoelectrochemical water splitting

Journal

SCIENTIFIC REPORTS
Volume 6, Issue -, Pages -

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/srep27241

Keywords

-

Funding

  1. National Basic Research Program of China [2012CB933301, 2014CB648300]
  2. Key Project of National High Technology Research of China [2011AA050526]
  3. Ministry of Education of China [IRT1148]
  4. National Synergetic Innovation Center for Advanced Materials (SICAM)
  5. Natural Science Foundation of Jiangsu Province, China [BM2012010]
  6. Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) [YX03001]
  7. NUPTSF [NY214181, NY213103]
  8. National Natural Science Foundation of China [51172110, 51372119, 81273409, 61136003, 51173081, 51272107, 61402240]

Ask authors/readers for more resources

A model of interface induction for interlayer growing is proposed for bandgap engineering insights into photocatalysis. In the interface of CdS/ZnS core/shell nanorods, a lamellar solid solution intermediate with uniform thickness and high crystallinity was formed under interface induction process. Merged the novel charge carrier transfer layer, the photocurrent of the core/shell/shell nanorod (css-NR) array was significantly improved to 14.0 mA cm(-2) at 0.0 V vs. SCE, nearly 8 times higher than that of the perfect CdS counterpart and incident photon to electron conversion efficiency (IPCE) values above 50% under AM 1.5G irradiation. In addition, this array photoelectrode showed excellent photocatalytic stability over 6000 s. These results suggest that the CdS/Zn1-xCdxS/ZnS css-NR array photoelectrode provides a scalable charge carrier transfer channel, as well as durability, and therefore is promising to be a large-area nanostructured CdS-based photoanodes in photoelectrochemical (PEC) water splitting system.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available