4.7 Article

Structural properties of Sb2S3 under pressure: evidence of an electronic topological transition

Journal

SCIENTIFIC REPORTS
Volume 6, Issue -, Pages -

Publisher

NATURE PORTFOLIO
DOI: 10.1038/srep24246

Keywords

-

Funding

  1. Michigan Space Grant Consortium
  2. Research Faculty Fellowship of Oakland University
  3. DOE-NNSA [DE-NA0001974]
  4. DOE-BES [DE-FG02-99ER45775]
  5. NSF
  6. DOE Office of Science by Argonne National Laboratory [DE-AC02-06CH11357]
  7. COMPRES under NSF [EAR 11-57758]
  8. GSECARS through NSF [EAR-1128799]
  9. DOE [DE-FG02-94ER14466]

Ask authors/readers for more resources

High-pressure Raman spectroscopy and x-ray diffraction of Sb2S3 up to 53 GPa reveals two phase transitions at 5 GPa and 15 GPa. The first transition is evidenced by noticeable compressibility changes in distinct Raman-active modes, in the lattice parameter axial ratios, the unit cell volume, as well as in specific interatomic bond lengths and bond angles. By taking into account relevant results from the literature, we assign these effects to a second-order isostructural transition arising from an electronic topological transition in Sb2S3 near 5 GPa. Close comparison between Sb2S3 and Sb2Se3 up to 10 GPa reveals a slightly diverse structural behavior for these two compounds after the isostructural transition pressure. This structural diversity appears to account for the different pressure-induced electronic behavior of Sb2S3 and Sb2Se3 up to 10 GPa, i.e. the absence of an insulator-metal transition in Sb2S3 up to that pressure. Finally, the second high-pressure modification appearing above 15 GPa appears to trigger a structural disorder at similar to 20 GPa; full decompression from 53 GPa leads to the recovery of an amorphous state.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available