4.7 Article

Human Vascular Microphysiological System for in vitro Drug Screening

Journal

SCIENTIFIC REPORTS
Volume 6, Issue -, Pages -

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/srep21579

Keywords

-

Funding

  1. NIH [UH2TR000505, 4UH3TR000505, R01HL044972, R21EB017868, P 40 RR017447]
  2. NIH Common Fund for the Microphysiological Systems Initiative
  3. American Heart Association Pre-doctoral Fellowship [14PRE20500062]

Ask authors/readers for more resources

In vitro human tissue engineered human blood vessels (TEBV) that exhibit vasoactivity can be used to test human toxicity of pharmaceutical drug candidates prior to pre-clinical animal studies. TEBVs with 400-800 mu M diameters were made by embedding human neonatal dermal fibroblasts or human bone marrow-derived mesenchymal stem cells in dense collagen gel. TEBVs were mechanically strong enough to allow endothelialization and perfusion at physiological shear stresses within 3 hours after fabrication. After 1 week of perfusion, TEBVs exhibited endothelial release of nitric oxide, phenylephrine-induced vasoconstriction, and acetylcholine-induced vasodilation, all of which were maintained up to 5 weeks in culture. Vasodilation was blocked with the addition of the nitric oxide synthase inhibitor L-N-G-Nitroarginine methyl ester (L-NAME). TEBVs elicited reversible activation to acute inflammatory stimulation by TNF-alpha which had a transient effect upon acetylcholine-induced relaxation, and exhibited dose-dependent vasodilation in response to caffeine and theophylline. Treatment of TEBVs with 1 mu M lovastatin for three days prior to addition of Tumor necrosis factor - alpha (TNF-alpha) blocked the injury response and maintained vasodilation. These results indicate the potential to develop a rapidly-producible, endothelialized TEBV for microphysiological systems capable of producing physiological responses to both pharmaceutical and immunological stimuli.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available