4.7 Article

Uncoupling shear and uniaxial elastic moduli of semiflexible biopolymer networks: compression-softening and stretch-stiffening

Journal

SCIENTIFIC REPORTS
Volume 6, Issue -, Pages -

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/srep19270

Keywords

-

Funding

  1. NIH [R01GM09697, U54-CA193417, EB017753]
  2. Fulbright Science and Technology Award
  3. Prins Bernhard Cultuurfonds-Kuitse Fonds
  4. Foundation for Fundamental Research on Matter (FOM), part of the Netherlands Organisation for Scientific Research (NWO)
  5. [NSF-DMR-1120901]

Ask authors/readers for more resources

Gels formed by semiflexible filaments such as most biopolymers exhibit non-linear behavior in their response to shear deformation, e.g., with a pronounced strain stiffening and negative normal stress. These negative normal stresses suggest that networks would collapse axially when subject to shear stress. This coupling of axial and shear deformations can have particularly important consequences for extracellular matrices and collagenous tissues. Although measurements of uniaxial moduli have been made on biopolymer gels, these have not directly been related to the shear response. Here, we report measurements and simulations of axial and shear stresses exerted by a range of hydrogels subjected to simultaneous uniaxial and shear strains. These studies show that, in contrast to volume-conserving linearly elastic hydrogels, the Young's moduli of networks formed by the biopolymers are not proportional to their shear moduli and both shear and uniaxial moduli are strongly affected by even modest degrees of uniaxial strain.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available