4.7 Article

Shift from complementarity to facilitation on P uptake by intercropped wheat neighboring with faba bean when available soil P is depleted

Journal

SCIENTIFIC REPORTS
Volume 6, Issue -, Pages -

Publisher

NATURE RESEARCH
DOI: 10.1038/srep18663

Keywords

-

Funding

  1. Projects of International Cooperation and Exchanges NSFC [31210103906]
  2. Innovative Group Grant of the National Natural Science Foundation of China [31421092]
  3. National Natural Science Foundation of China [31201691, 30925024, 31330070]

Ask authors/readers for more resources

Rhizosphere processes stimulate overyielding and facilitative phosphorus (P) uptake in cereal/legume intercropping systems. However, little is known about when and how rhizosphere alteration of legumes plays a role in improving P uptake by cereals. Wheat was grown isolated, monocropped or intercropped with faba bean in pots with low-P soil. The biomass, P content, carboxylates and phosphatases activity were measured in 15 destructive samplings. Intraspecific competition of the biomass and P uptake of monocropped wheat was not significant before 40 and 36 days after sowing (DAS), whereas there was interspecific competition of biomass of intercropped wheat before 66 DAS. However, afterwards, the increments of the biomass and P uptake of the intercropped wheat were 1.3-1.9 and 1.9-2.3 times of increment of monocropped wheat. Meanwhile, the concentrations of malate and citrate and the acid phosphatase activity in the rhizospheres of intercropped wheat were significantly increased, which suggested that wheat/faba bean intercropping is efficient in P utilization due to complementary P uptake in the early growth stage and the positive interactions of the rhizosphere processes when the soil P was depleted.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available