4.7 Article

Miniaturized Swimming Soft Robot with Complex Movement Actuated and Controlled by Remote Light Signals

Journal

SCIENTIFIC REPORTS
Volume 5, Issue -, Pages -

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/srep17414

Keywords

-

Funding

  1. National Natural Science Foundation of China [61375091, 51375477, 51225304, 21134003]

Ask authors/readers for more resources

Powering and communication with micro robots to enable complex functions is a long-standing challenge as the size of robots continues to shrink. Physical connection of wires or components needed for wireless communication are complex and limited by the size of electronic and energy storage devices, making miniaturization of robots difficult. To explore an alternative solution, we designed and fabricated a micro soft swimming robot with both powering and controlling functions provided by remote light, which does not carry any electronic devices and batteries. In this approach, a polymer film containing azobenzene chromophore which is sensitive to ultra-violet (UV) light works as motor, and the UV light and visible light work as power and signal lines. Periodically flashing UV light and white light drives the robot flagellum periodically to swing to eventually push forward the robot in the glass tube filled with liquid. The gripper on robot head can be opened or closed by lights to grab and carry the load. This kind of remotely light-driven approach realizes complex driving and controlling of micro robotic structures, making it possible to design and fabricate even smaller robots. It will have great potential among applications in the micro machine and robot fields.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available