4.7 Article

Water-enhanced Removal of Ciprofloxacin from Water by Porous Graphene Hydrogel

Journal

SCIENTIFIC REPORTS
Volume 5, Issue -, Pages -

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/srep13578

Keywords

-

Funding

  1. National Natural Science Foundation of China [21207100, 51408362]

Ask authors/readers for more resources

An environmentally benign and efficient hydrothermal reduction method was applied for the preparation of three-dimensional (3D) porous graphene hydrogel (GH) adsorbents. The physicochemical properties of GH granules were systematically characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), Raman spectra and Brunauer-Emmett-Teller (BET) method. GH granules showed an excellent adsorption capacity (235.6 mg/g) for ciprofloxacin via combined adsorption interaction mechanisms (e.g. pi-pi EDA interaction, hydrogen bonding, and hydrophobic interaction). Moreover, reducing the size of the hydrogels can significantly accelerate the adsorption process and enhance the removal efficiency of pollutants from aqueous solution. Water (more than 99 wt%) within hydrogels played a key role in enhancing adsorption performance. The GO hydrogels exhibited an excellent adaptability to environmental factors. These findings demonstrate that GH granules are promising adsorbents for the removal of antibiotic pollutants from aqueous solutions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available