4.7 Article

Dimensionality Control of d-orbital Occupation in Oxide Superlattices

Journal

SCIENTIFIC REPORTS
Volume 4, Issue -, Pages -

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/srep06124

Keywords

-

Funding

  1. Institute for Basic Science (IBS) in Korea
  2. U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division

Ask authors/readers for more resources

Manipulating the orbital state in a strongly correlated electron system is of fundamental and technological importance for exploring and developing novel electronic phases. Here, we report an unambiguous demonstration of orbital occupancy control between t(2g) and e(g) multiplets in quasi-two-dimensional transition metal oxide superlattices (SLs) composed of a Mott insulator LaCoO3 and a band insulator LaAlO3. As the LaCoO3 sublayer thickness approaches its fundamental limit (i.e. one unit-cell-thick), the electronic state of the SLs changed from a Mott insulator, in which both t(2g) and e(g) orbitals are partially filled, to a band insulator by completely filling (emptying) the t(2g) (e(g)) orbitals. We found the reduction of dimensionality has a profound effect on the electronic structure evolution, which is, whereas, insensitive to the epitaxial strain. The remarkable orbital controllability shown here offers a promising pathway for novel applications such as catalysis and photovoltaics, where the energy of d level is an essential parameter.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available