4.7 Article

Rapid continuous synthesis of spherical reduced graphene ball-nickel oxide composite for lithium ion batteries

Journal

SCIENTIFIC REPORTS
Volume 4, Issue -, Pages -

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/srep05786

Keywords

-

Funding

  1. National Research Foundation of Korea (NRF) - Korea government (MEST) [2012R1A2A2A02046367]
  2. Energy Efficiency & Resources Core Technology Program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) - Ministry of Trade, Industry & Energy, Republic of Korea [201320200000420]

Ask authors/readers for more resources

In this study, we synthesized a powder consisting of core-shell-structured Ni/NiO nanocluster-decorated graphene (Ni/NiO-graphene) by a simple process for use as an anodic material for lithium-ion batteries. First, a crumpled graphene powder consisting of uniformly distributed Ni nanoclusters was prepared by one-pot spray pyrolysis. This powder was subsequently transformed into the Ni/NiO-graphene composite by annealing at 300 degrees C in air. The Ni/NiO-graphene composite powder exhibited better electrochemical properties than those of the hollow-structured NiO-Ni composite and pure NiO powders. The initial discharge and charge capacities of the Ni/NiO-graphene composite powder were 1156 and 845 mA h g(-1), respectively, and the corresponding initial coulombic efficiency was 73%. The discharge capacities of the Ni/NiO-graphene, NiO-Ni, and pure NiO powders after 300 cycles were 863, 647, and 439 mA h g(-1), respectively. The high stability of the Ni/NiO-graphene composite powder, attributable to the unique structure of its particles, resulted in it exhibiting long-term cycling stability even at a current density of 1500 mA g(-1), as well as good rate performance. The structural stability of the Ni/NiO-graphene composite powder particles during cycling lowered the charge transfer resistance and improved the Li-ion diffusion rate.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available