4.7 Article

Multiple roles of the ER stress sensor IRE1 demonstrated by gene targeting in rice

Journal

SCIENTIFIC REPORTS
Volume 2, Issue -, Pages -

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/srep00944

Keywords

-

Funding

  1. Genomics for Agricultural Innovation [GMC0003]
  2. NIAS Strategic Research Funding from the Ministry of Agriculture Forestry and Fisheries of Japan

Ask authors/readers for more resources

The endoplasmic reticulum (ER) stress sensor, IRE1, contains a kinase domain and a ribonuclease domain. Ribonuclease mediates the unconventional splicing of mRNA encoding the transcription factor AtbZIP60 in Arabidopsis, or OsbZIP50 in rice, and thereby transduces signals from stressed ER. Here, we demonstrate the additional roles of plant IRE1 using genetically modified rice plants. Using a gene targeting system based on homologous recombination, genomic IRE1 was replaced with two types of missense alleles, leading to a defect in the kinase or ribonuclease activity of IRE1. Genetic analysis of these alleles demonstrated that the kinase activity of IRE1 plays a vital role independent of ribonuclease activity. Furthermore, the existence of ribonuclease substrates other than OsbZIP50 mRNA is demonstrated for the first time. This study provides new insights into higher plant signalling using a gene targeting approach.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available