3.8 Article

Dissipative particle dynamics simulation study of the bilayer-vesicle transition

Journal

SCIENCE IN CHINA SERIES B-CHEMISTRY
Volume 51, Issue 8, Pages 743-750

Publisher

SCIENCE PRESS
DOI: 10.1007/s11426-008-0077-5

Keywords

vesicle; dissipative particle dynamics; lipid

Ask authors/readers for more resources

A bilayer structure is an important immediate for the vesicle formation. However, the mechanism for the bilayer-vesicle transition remains unclear. In this work, a dissipative particle dynamics (DPD) simulation method was employed to study the mechanism of the bilayer-vesicle transition. A coarse-grained model was built based on a lipid molecule termed dimyristoylphosphatidylcholine (DMPC). Simulations were performed from two different initial configurations: a random dispersed solution and a tensionless bilayer. It was found that the bilayer-vesicle transition was driven by the minimization of the water-tail hydrophobic interaction energy, and was accompanied with the increase of the position entropy due to the redistribution of water molecules. The bulk pressure was reduced during the bilayer-vesicle transition, suggesting the evolved vesicle morphology was at the relatively low free energy state. The membrane in the product vesicle was a two-dimensional fluid. It can be concluded that the membrane of a vesicle is not interdigitated and most of the bonds in lipid chains are inclined to orient along the radical axis of the vesicle.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available