4.6 Article

Rh-catalyzed WO3 with anomalous humidity dependence of gas sensing characteristics

Journal

RSC ADVANCES
Volume 4, Issue 95, Pages 53130-53136

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c4ra06654e

Keywords

-

Funding

  1. National Research Foundation of Korea (NRF) - Korean government (MEST) [2013R1A2A1A01006545]
  2. Industrial Strategic Technology Development Program - Ministry of Trade, Industry Energy (KEIT) [10047868]

Ask authors/readers for more resources

The sensing of volatile organic compounds is crucial in a variety of fields including disease diagnosis, food, and homeland security. However, the significant deterioration of gas response by water vapors often hinders the sensitive and reliable gas detection in a highly humid atmosphere. Herein, we report an Rh-loaded WO3 hollow sphere chemiresistive sensor that can be potentially used for acetone gas analysis in a highly humid atmosphere. Pure WO3 and Rh-loaded WO3 hollow spheres are synthesized via a spray pyrolysis method. The Rh-loaded WO3 sensor achieved a fast acetone response (2 s), high sensitivity, good linearity, high stability, low detection limit (40 ppb) and strong selectivity to acetone even under a highly humid (80% RH) atmosphere, compared with the unloaded WO3 sensor. Interestingly, an abnormal phenomenon occurs only with the n-type Rh-loaded WO3 sensor, where the resistance and gas response increases in humid atmospheres. The sensing mechanism by Rh loading is also addressed. The unusual improvement of gas response, selectivity, responding kinetics by Rh loading shows a good potential for the detection of acetone gas.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available