4.6 Article

Specific removal of protein using protein imprinted polydopamine shells on modified amino-functionalized magnetic nanoparticles

Journal

RSC ADVANCES
Volume 4, Issue 110, Pages 64514-64524

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c4ra07965e

Keywords

-

Funding

  1. National Natural Science Foundation of China [21305107]
  2. Fundamental Research Funds for the Central Universities [08143081, 08142034]
  3. China Postdoctoral Science Foundation [2014M562388]

Ask authors/readers for more resources

Thin imprinted shells over functionalized magnetic nanoparticles is an effective solution to weaken mass transfer resistance, achieve high binding capacity, and attain rapid separation. In this work, a simple, green, and effective approach was developed to imprint bovine serum albumin (BSA) on the surface of amino-modified Fe3O4 nanoparticles (Fe3O4@NH2) using dopamine as monomer through a two-step immobilized template strategy. The results of X-ray diffraction and vibrating sample magnetometry indicated that the as-synthesized nanomaterials exhibited high crystallinity and satisfactory superparamagnetic properties. Transmission electron microscopy and Fourier transform infrared spectroscopy of the products showed that polydopamine shells successfully attached onto Fe3O4@NH2. The polydopamine shells with a thickness of about 10 nm enable the template recognition sites to be accessed easily, and exhibit fast kinetics and high adsorption capacity in aqueous solution. Meanwhile, an excellent selectivity towards BSA has been presented when bovine hemoglobin (BHb), transferrin, and immunoglobulin G (IgG) were employed as competitive proteins. Good recovery after a reasonably mild elution and successful capture of the target protein from a real sample of bovine blood suggests its potential value in practical applications. In addition, the resultant polymers were stable and had no obvious deterioration after six adsorption-regeneration cycles. The versatility of the proposed method has also been verified by choosing four other proteins with different isoelectric points as the templates.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available