4.6 Article

PEGylated gold nanoparticles: polymer quantification as a function of PEG lengths and nanoparticle dimensions

Journal

RSC ADVANCES
Volume 3, Issue 17, Pages 6085-6094

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c3ra22739a

Keywords

-

Funding

  1. Science Foundation Ireland through Strategic Research Cluster (SRC) grants [07/SRC/B1155, 07/SRC/B1154]

Ask authors/readers for more resources

Au nanoparticles with diameters ranging between 15 and 170 nm have been synthesised in aqueous solution using a seed-mediated growth method, employing hydroxylamine hydrochloride as a reducing agent. Thiolated polyethylene glycol (mPEG-SH) polymers, with molecular weights ranging from 2100 to 51 000 g mol(-1), were used as efficient particle stabilising ligands. Dynamic light scattering and zeta potential measurements confirmed that the overall mean diameter and zeta potential of the capped nanoparticles increased in a non-linear way with increasing molecular weight of the mPEG-SH ligand. Electron microscopy and thermal gravimetric analysis of the polymer-capped nanoparticles, with a mean gold core diameter of 15 nm, revealed that the grafting density of the mPEG-SH ligands decreased from 3.93 to 0.31 PEG nm(-2) as the molecular weight of the ligands increased from 2100 to 51 400 g mol(-1) respectively, due to increased steric hindrance and polymer conformational entropy with increase in the PEG chain length. Additionally, the number of bound mPEG-SH ligands, with a molecular weight of 10 800 g mol(-1), was found to increase in a non-linear way from 278 (sigma = 42) to approximately 12 960 PEG (sigma = 1227) when the mean Au core diameter increased from 15 to 115 nm respectively. However, the grafting density of mPEG(10000)-SH ligands was higher on 15 nm Au nanoparticles and decreased slightly from 1.57 to 0.8 PEG nm(-2) when the diameter increased; this effect can be attributed to the fact that smaller particles offer higher surface curvature, therefore allowing increased polymer loading per nm(2). Au nanoparticles were also shown to interact with CT-26 cells without causing noticeable toxicity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available