4.6 Article

Rapid synthesis of CuO nanoribbons and nanoflowers from the same reaction system, and a comparison of their supercapacitor performance

Journal

RSC ADVANCES
Volume 3, Issue 36, Pages 15719-15726

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c3ra42869a

Keywords

-

Funding

  1. key program of natural science foundation of Hubei Province [2012FFA080]

Ask authors/readers for more resources

One-dimensional CuO nanoribbons and three-dimensional CuO nanoflowers were synthesized via a facile, rapid, low-temperature, one-pot water bath method, in which the synthesis was performed in Cu(CH3COO)(2)/NaOH and aqueous/ethanol systems at 70 degrees C for 15 min. Control over the shape and dimensionality of the well-defined CuO single crystals was achieved simply by varying the order of addition of the reactive materials. X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and selected area electron diffraction were used to characterize the products. The formation mechanism in the in situ, rapid reaction was investigated. In Brunauer-Emmett-Teller and thermogravimetry measurements, the nanoribbons exhibited a higher specific surface area and higher adsorption capabilities than the nanoflowers. Using cyclic voltammetry, chronopotentiometry and EIS measurement for supercapacitance, it was shown that the nanoflower electrodes had better performance than the nanoribbon electrodes, however, the nanoribbon/C electrodes had better performance than the nanoflower/C electrodes at lower current density, but were worse at higher current density.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available