4.5 Article

Electroacupuncture alleviates retrieval of pain memory and its effect on phosphorylation of cAMP response element-binding protein in anterior cingulate cortex in rats

Journal

BEHAVIORAL AND BRAIN FUNCTIONS
Volume 11, Issue -, Pages -

Publisher

BMC
DOI: 10.1186/s12993-015-0055-y

Keywords

Electroacupuncture; Pain memory; Phosphorylation of cAMP response elment-binding protein; Anterior cingulate cortex; Rat

Funding

  1. Youth National Natural Science Foundation of China [81102645]
  2. Academic Climbing Plan of Young and Middle-age Leader of colleges and universities in Zhejiang, China [pd2013203]
  3. Science and Technology Innovation Plan of University Students in Zhejiang, China [2013R410056]

Ask authors/readers for more resources

Background: Recent evidence suggests that persistent pain and recurrent pain are due to the pain memory which is related to the phosphorylation of cAMP response element-binding protein (p-CREB) in anterior cingulate cortex (ACC). Eletroacupuncture (EA), as a complementary Chinese medical procedure, has a significant impact on the treatment of pain and is now considered as a mind-body therapy. Methods: The rat model of pain memory was induced by two injections of carrageenan into the paws, which was administered separately by a 14-day interval, and treated with EA therapy. The paw withdrawal thresholds (PWTs) of animals were measured and p-CREB expressions in ACC were detected by using immunofluorescence (IF) and electrophoretic mobility shift assay (EMSA). Statistical comparisons among different groups were made by one-way, repeated-measures analysis of variance (ANOVA). Results: The second injection of carrageenan caused the decrease of PWTs in the non-injected hind paw. EA stimulation applied prior to the second injection, increased the values of PWTs. In ACC, the numbers of p-CREB positive cells were significantly increased in pain memory model rats, which were significantly reduced by EA. EMSA results showed EA also down-regulated the combining capacity of p-CREB with its DNA. Furthermore, the co-expression of p-CREB with GFAP, OX-42, or NeuN in ACC was strengthened in the pain memory model rats. EA inhibited the co-expression of p-CREB with GFAP or OX-42, but not NeuN in ACC. Conclusions: The present results suggest the retrieval of pain memory could be alleviated by the pre-treatment of EA, which is at least partially attributed to the down-regulated expression and combining capacity of p-CREB and the decreased expression of p-CREB in astrocytes and microglia cells.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available