4.6 Review

Hierarchical structure and mechanical properties of nacre: a review

Journal

RSC ADVANCES
Volume 2, Issue 20, Pages 7617-7632

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c2ra20218b

Keywords

-

Funding

  1. National Natural Science Foundation of China [31172144]
  2. Science & Technology Development Projects of Jilin Province [20090147]
  3. Basic Operation Foundation of Jilin University [200903271]
  4. Project of the National Twelfth-Five Year Research Program of China [2011BAD20B09-15]
  5. Project 985 of Jilin University

Ask authors/readers for more resources

Nacre (known as mother of pearl) is the iridescent inner shell layer of some mollusks. Nacre is composed of 95 wt% aragonite (a crystallographic form of CaCO3) and 5 wt% organic materials (proteins and polysaccharides). It is well known that it exhibits high fracture toughness, much greater than that of monolithic aragonite, because of its ingenious structure. It also exhibits energy absorption properties. It has a complex hierarchical microarchitecture that spans multiple length scales from the nanoscale to the macroscale. It includes columnar architectures and sheet tiles, mineral bridges, polygonal nanograins, nanoasperities, plastic microbuckling, crack deflection, and interlocking bricks, which exhibit a remarkable combination of stiffness, low weight and strength. Nacre's special self-assembly characteristics have attracted interest from materials scientists for the development of laminated composite materials, molecular scale self-assembly and biomineralization. This paper reviews the characteristics of hierarchical structure and the mechanical properties of nacre that provide the desired properties, and the latest developments and biomimetic applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available