4.6 Article

Hydrothermal synthesis of CdS/CdLa2S4 heterostructures for efficient visible-light-driven photocatalytic hydrogen production

Journal

RSC ADVANCES
Volume 2, Issue 27, Pages 10330-10336

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c2ra21641h

Keywords

-

Funding

  1. National Science Foundation of China [51102015, 51004008, 21071014]
  2. Fundamental Research Funds for the Central Universities [FRF-AS-11-002A, FRF-TP-12-023A]
  3. China Postdoctoral Science Foundation [20110490009]
  4. Research Fund for the Doctoral Program of Higher Education of China [20110006120027]
  5. National Basic Research Program of China (973 Program) [2007CB613301]
  6. Program for New Century Excellent Talents in University [NCET-11-0577]

Ask authors/readers for more resources

Large-scale hydrogen production through water splitting using photocatalysts with solar energy can potentially produce clean fuel from renewable resources. In this work, photocatalytic hydrogen evolution with a high efficiency was achieved using CdS nanocrystal decorated CdLa2S4 microspheres (CdS/CdLa2S4) successfully prepared by a two-step hydrothermal process. The obtained CdS/CdLa2S4 composite was characterized by X-ray diffraction (XRD), electron microscopy (EM), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance absorption spectroscopy (DRS), and photoluminescence spectroscopy (PL). XRD demonstrated that highly crystalline hexagonal CdS was obtained in CdS/CdLa2S4. EM results revealed that CdLa2S4 microspheres assembled from a large number of nanoprisms, were intimately enwrapped by the surrounding CdS nanocrystals with a particle size below 20 nm. This unique architecture resulted in the appropriate dispersion of CdS nanocrystals and intimate multipoint contacts between the CdS nanocrystals and CdLa2S4, which led to significant enhancement of charge separation in CdS/CdLa2S4. Especially, the CdLa2S4 microspheres decorated with 3 wt% CdS nanocrystals containing 0.4 wt% of Pt showed a high rate of H-2-production at 2.25 mmol h(-1) with an apparent quantum efficiency of 54% under 420 nm monochromatic light. The rate of hydrogen evolution from water splitting was 9 times faster in comparison with the rate observed on pure CdLa2S4, which is ascribed to the presence of CdS nanocrystals that alter the energy levels of the conduction and valence bands in the coupled semiconductor system.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available