4.6 Article

A study of the flavin response by Shewanella cultures in carbon-limited environments

Journal

RSC ADVANCES
Volume 2, Issue 26, Pages 10020-10027

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c2ra21727a

Keywords

-

Funding

  1. Material Science Directorate of the U.S. Air Force Research Laboratory
  2. Air Force Office of Scientific Research
  3. Oak Ridge Institute for Science and Education

Ask authors/readers for more resources

Mediated electron transfer has been implicated as a primary mechanism of extracellular electron transfer to insoluble electron acceptors in anaerobic cultures of the facultative anaerobe Shewanella oneidensis. In this work, planktonic and biofilm cultures of S. oneidensis exposed to carbon-limited environments trigger an electrochemical response thought to be the signature of an electrochemically active metabolite. This metabolite was detected via cyclic voltammetry for S. oneidensis MR-1 biofilms. The observed electrochemical potentials correspond to redox potentials of flavin-containing molecules. Chromatographic techniques were then used to quantify concentrations of riboflavin by the carbon-limited environmental response of planktonic S. oneidensis. Further evidence of flavin redox chemistry was associated with biofilm formation on multi-walled carbon nanotube-modified Toray paper under carbon-starved environments. By encapsulating one such electrode in silica, the encapsulated biofilm exhibits riboflavin redox activity earlier than a non-encapsulated system after media replacement. This work explores the electrochemical nature of riboflavin interaction with an electrode after secretion from S. oneidensis and in comparison to abiotic systems.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available