4.6 Article

Looped carbon capturing and environmental remediation: case study of magnetic polypropylene nanocomposites

Journal

RSC ADVANCES
Volume 2, Issue 11, Pages 4844-4856

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c2ra01150f

Keywords

-

Funding

  1. National Science Foundation-Chemical and Biological Separations [CBET 11-37441]
  2. National Science Foundation-Nanoscale Interdisciplinary Research Team and Materials Processing and Manufacturing [CMMI 10-30755]
  3. NSF [DMR 10-05764]
  4. Div Of Civil, Mechanical, & Manufact Inn [1030755] Funding Source: National Science Foundation

Ask authors/readers for more resources

A waste-free process to recycle Fe@Fe2O3/polypropylene (PP) polymer nanocomposites (PNCs) is introduced to synthesize magnetic carbon nanocomposites (MCNCs) and simultaneously produce useful chemical species which can be utilized as a feedstock in petrochemical industry. The magnetic nanoparticles (NPs) are found to have an effective catalytic activity on the pyrolysis of PP. The PNCs (with a NP loading of 20.0 wt%) undergo a complete degradation with 2 h pyrolysis at 500 degrees C in a H-2/Ar atmosphere and the degradation components exhibit a distribution of species with different numbers of carbon, while only 40% of pure PP is decomposed after applying the same pyrolytic conditions. The coked solid waste from the conventional process has been utilized as a carbon source to form a protective carbon shell surrounding the magnetic NPs. The magnetic carbon nanocomposites (MCNCs) pyrolyzed from PNCs containing 20.0 wt% NPs demonstrate extremely fast Cr(VI) removal from wastewater with the almost complete removal of Cr(VI) within 10 min. The pH effect on the Cr(VI) removal efficiency is investigated with a preferable value of 1-3. The adsorbent exhibits much higher adsorption capacity in acidic solutions than that in alkali solutions. The large saturation magnetization (32.5 emu g(-1)) of these novel magnetic carbon nanocomposites allows fast recycling of both the adsorbents and the adsorbed Cr(VI) from the liquid suspension in a more energetically and economically sustainable way by simply applying a permanent magnet. The significantly reduced treatment time required to remove the Cr(VI) makes these MCNCs promising for the efficient removal of the heavy metals from wastewater. Kinetic investigation reveals the pseudo-second-order adsorption of Cr(VI) on these novel magnetic carbon nanocomposite

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available