4.4 Article

Season-dependence of remote sensing indicators of tree species diversity

Journal

REMOTE SENSING LETTERS
Volume 5, Issue 5, Pages 404-412

Publisher

TAYLOR & FRANCIS LTD
DOI: 10.1080/2150704X.2014.912767

Keywords

-

Funding

  1. Academy of Finland
  2. Ministry for Foreign Affairs of Finland

Ask authors/readers for more resources

During recent years, many studies have been undertaken to investigate how spectral characteristics of forests can provide information on spatial patterns of tree species diversity (TSD). Important advances have been made, and significant relationships between TSD and remotely sensed indicators of net primary productivity and environmental heterogeneity have been reported. However, the season-dependence of these relationships has not yet been fully investigated, and the influence of phenology remains poorly understood. In this study, we aim to assess how the relationships between remote sensing indicators and TSD depend on the season of the year. TSD measures, including species richness, Shannon's diversity and Simpson's diversity, were determined for 82 field plots in the Afromontane cloud forests of Taita Hills, Kenya. A time series of 15 Landsat images were used to calculate a set of spectral and heterogeneity metrics. The relationship between remote-sensing metrics and TSD measures was analysed by simple and multivariate regression analysis. We conclude that the relationships between remote-sensing metrics and TSD are season-dependent. Hence, it is demonstrated the date of image acquisition is an important aspect to be considered in biodiversity studies. Given that the dependence of the relationships is closely linked to climate seasonality defining vegetation phenology, the relationships may also vary according to geographical conditions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available