4.4 Article

Canopy surface reconstruction from a LiDAR point cloud using Hough transform

Journal

REMOTE SENSING LETTERS
Volume 1, Issue 3, Pages 125-132

Publisher

TAYLOR & FRANCIS LTD
DOI: 10.1080/01431161003649339

Keywords

-

Funding

  1. NSERC
  2. Canadian Forest Service
  3. Canadian Wood Fibre Centre

Ask authors/readers for more resources

Tree height and canopy volume are critical forestry parameters that are used to derive estimates of growth, carbon sequestration, standing timber volume, and biomass. Through the use of light detection and ranging, these attributes can be estimated rapidly over large areas. At the stand level, estimates of these attributes have been derived successfully from canopy height models. However, a number of challenges identified in using canopy height models remain, such as correcting for height underestimation and canopy surface irregularities, such as data pits and holes that may result from acquisition and/or post-processing, and consistent delineation of tree crowns - all of which can limit the accurate retrieval of individual tree and crown attributes. In this letter, a novel canopy model is proposed in which individual tree crowns are represented as objects for which delineations can be derived through geometric operations. The technique is based on fitting simple geometric shapes to the raw light detection and ranging point cloud and thereby compensates for this underestimation, reduces data size, and allows effective and efficient modelling at the individual tree level.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available