4.6 Article

Reduction of scattering loss in fluoroindate glass fibers

Journal

OPTICAL MATERIALS EXPRESS
Volume 3, Issue 9, Pages 1285-1301

Publisher

OPTICAL SOC AMER
DOI: 10.1364/OME.3.001285

Keywords

-

Funding

  1. Defence Science and Technology Organisation (DSTO)
  2. University of Adelaide
  3. ARC Federation Fellowship

Ask authors/readers for more resources

The current fluoroindate glass optical fiber loss is dominated by extrinsic absorption and scattering loss. Attempts were made to reduce fluoroindate glass fiber loss by optimizing glass melting conditions, preform extrusion process and fiber drawing conditions. Our results show that fluorination of the glass batches (with 99.99% InF3) at 450 degrees C by addition of ammonium bifluoride reduced un-dissolved particles (potential scattering losses) in the glass. Glass flow analysis was carried out to provide insights into the glass temperature-viscosity behavior and the relationship between preform surface roughness and extrusion temperature, which enabled fabrication of preforms with low surface roughnesses and eventually reduced the fiber scattering loss. Fiber surface crystallization was reduced via conducting chemical etching and polishing (with colloidal silica) on both glass billets and preforms, extending the heating zone for fiber drawing, and applying additional weight at the bottom of preforms. As a consequence, the fiber surface roughness decreased, resulting in decreased fiber scattering loss and enhanced fiber strength. (c) 2013 Optical Society of America

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available