4.8 Article

Global flood risk under climate change

Journal

NATURE CLIMATE CHANGE
Volume 3, Issue 9, Pages 816-821

Publisher

NATURE PORTFOLIO
DOI: 10.1038/NCLIMATE1911

Keywords

-

Funding

  1. Funding Program for Next-Generation World-Leading Researchers
  2. Japan Society for the Promotion of Science
  3. CREST of Japan Science and Technology Agency
  4. Environmental Research and Technology Development Fund of the Ministry of the Environment, Japan [S-10]

Ask authors/readers for more resources

A warmer climate would increase the risk of floods(1). So far, only a few studies(2,3) have projected changes in floods on a global scale. None of these studies relied on multiple climate models. A few global studies(4,5) have started to estimate the exposure to flooding (population in potential inundation areas) as a proxy of risk, but none of them has estimated it in a warmer future climate. Here we present global flood risk for the end of this century based on the outputs of 11 climate models. A state-of-the-art global river routing model with an inundation scheme(6) was employed to compute river discharge and inundation area. An ensemble of projections under a new high-concentration scenario(7) demonstrates a large increase in flood frequency in Southeast Asia, Peninsular India, eastern Africa and the northern half of the Andes, with small uncertainty in the direction of change. In certain areas of the world, however, flood frequency is projected to decrease. Another larger ensemble of projections under four new concentration scenarios(7) reveals that the global exposure to floods would increase depending on the degree of warming, but interannual variability of the exposure may imply the necessity of adaptation before significant warming.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available