4.8 Article

Food-chain length alters community responses to global change in aquatic systems

Journal

NATURE CLIMATE CHANGE
Volume 3, Issue 3, Pages 228-233

Publisher

NATURE PORTFOLIO
DOI: 10.1038/NCLIMATE1689

Keywords

-

Funding

  1. Swedish Research Council for the Environment and Spatial Planning (Formas)
  2. Swedish Research Council (VR) through the Centre for Animal Movement Research (CAnMove)
  3. Linnaeus grant [349-2007-8690]

Ask authors/readers for more resources

Synergies between large-scale environmental changes, such as climate change(1) and increased humic content (brownification)(2), will have a considerable impact on future aquatic ecosystems. On the basis of modelling, monitoring and experimental data, we demonstrate that community responses to global change are determined by food-chain length and that the top trophic level, and every second level below, will benefit from climate change, whereas the levels in between will suffer. Hence, phytoplankton, and thereby algal blooms, will benefit from climate change in three-, but not in two-trophic-level systems. Moreover, we show that both phytoplankton (resource) and zooplankton (consumer) advance their spring peak abundances similarly in response to a 3 degrees C temperature increase; that is, there is no support for a consumer/resource mismatch in a future climate scenario. However, in contrast to other taxa, cyanobacteria-known as toxin-producing nuisance phytoplankton(3)-benefit from a higher temperature and humic content irrespective of the food-chain composition. Our results are mirrored in natural ecosystems. By mechanistically merging present food-chain theory with large-scale environmental and climate changes, we provide a powerful framework for predicting and understanding future aquatic ecosystems and their provision of ecosystem services and water resources.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available