4.8 Article

Temperature-related changes in polar cyanobacterial mat diversity and toxin production

Journal

NATURE CLIMATE CHANGE
Volume 2, Issue 5, Pages 356-360

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/NCLIMATE1418

Keywords

-

Funding

  1. Deutsche Forschungsgemeinschaft (DFG) [DI698/18-1 Dietrich]
  2. Spanish Ministry of Science and Technology [POL2006-06635, CGL2005-06549-C02-01/ANT, CGL2005-06549-C02-02/ANT]
  3. TOTAL Foundation
  4. Carl Zeiss Stiftung
  5. Excellence Initiative of the University of Konstanz, Germany
  6. European Community [227788]
  7. Natural Environment Research Council [dml011002] Funding Source: researchfish
  8. NERC [dml011002] Funding Source: UKRI

Ask authors/readers for more resources

One of the fastest rates of recent climate warming has been reported for the Arctic and the maritime Antarctic(1); for example, mean annual temperatures increased by 0.5 degrees C per decade over the Antarctic Peninsula during the past 50 years(2). Owing to their comparatively simple and highly sensitive food webs(3), polar freshwater systems, with cyanobacterial mats representing the dominant benthic primary producers(4), seem well suited for monitoring environmental perturbation, including climate change(5). Prolonged climate change may challenge the resilience, plasticity and adaptability and thus affect the community composition of cyanobacterial mats. We demonstrate that exposing polar mat samples to raised temperatures for six months results in a change in species predominance. Mats exposed to a constant temperature of 8 degrees C or 16 degrees C showed high cyanobacterial diversity, commensurate with an increased presence of cyanobacterial toxins. In contrast, mats held at 4 degrees C and 23 degrees C seemed low in diversity. Our data thus indicate that a temperature shift to 8-16 degrees C, potentially reached during summer months in polar regions at the present warming rate, could affect cyanobacterial diversity, and in some instances result in a shift to toxin-producing species or to elevated toxin concentrations by pre-existing species that could profoundly alter freshwater polar ecosystems.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available