4.6 Article

Flexible Strain Sensor Based on Carbon Black/Silver Nanoparticles Composite for Human Motion Detection

Journal

MATERIALS
Volume 11, Issue 10, Pages -

Publisher

MDPI
DOI: 10.3390/ma11101836

Keywords

carbon black; silver nanoparticles; composite; flexible strain sensor; human motion detection

Funding

  1. National Natural Science Foundation of China [61574099]

Ask authors/readers for more resources

The demand for flexible and wearable electronic devices with excellent stretchability and sensitivity is increasing, especially for human motion detection. In this work, a simple, low-cost and convenient strategy has been employed to fabricate flexible strain sensor with a composite of carbon black and silver nanoparticles as sensing materials and thermoplastic polyurethane as matrix. The strain sensors thus prepared possesses high stretchability and good sensitivity (gauge factor of 21.12 at 100% tensile strain), excellent static (almost constant resistance variation under 50% strain for 600 s) and dynamic (100 cycles) stability. Compared with bare carbon black-based strain sensor, carbon black/silver nanoparticles composite-based strain sensor shows similar to 18 times improvement in sensitivity at 100% strain. In addition, we discuss the sensing mechanisms using the disconnection mechanism and tunneling effect which results in high sensitivity of the strain sensor. Due to its good strain-sensing performance, the developed strain sensor is promising in detecting various degrees of human motions such as finger bending, wrist rotation and elbow flexion.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available