4.6 Article

Novel Porous Phosphorus-Calcium-Magnesium Coatings on Titanium with Copper or Zinc Obtained by DC Plasma Electrolytic Oxidation: Fabrication and Characterization

Journal

MATERIALS
Volume 11, Issue 9, Pages -

Publisher

MDPI
DOI: 10.3390/ma11091680

Keywords

micro arc oxidation; plasma electrolytic oxidation; DC PEO; DC MAO; titanium; calcium nitrate tetrahydrate; magnesium nitrate hexahydrate; copper(II) nitrate trihydrate; 85% phosphoric acid

Funding

  1. OPUS 11 of the National Science Centre, Poland [2016/21/B/ST8/01952]

Ask authors/readers for more resources

In this paper, the characteristics of new porous coatings fabricated at three voltages in electrolytes based on H3PO4 with calcium nitrate tetrahydrate, magnesium nitrate hexahydrate, and copper(II) nitrate trihydrate are presented. The SEM, energy dispersive spectroscopy (EDS), glow discharge optical emission spectroscopy (GDOES), X-ray photoelectron spectroscopy (XPS), and XRD techniques for coating identification were used. It was found that the higher the plasma electrolytic oxidation (PEO) (micro arc oxidation (MAO)) voltage, the thicker the porous coating with higher amounts of built-in elements coming from the electrolyte and more amorphous phase with signals from crystalline Ca(H2PO4)(2)center dot H2O and/or Ti(HPO4)(2)center dot H2O. Additionally, the external parts of the obtained porous coatings formed on titanium consisted mainly of Ti4+, Ca2+, Mg2+ and PO43-, HPO42-, H2PO4-, P2O74- as well as Zn2+ or copper Cu+/Cu2+. The surface should be characterized by high biocompatibility, due to the presence of structures based on calcium and phosphates, and have bactericidal properties, due to the presence of zinc and copper ions. Furthermore, the addition of magnesium ions should accelerate the healing of postoperative wounds, which could lead to faster patient recovery.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available