4.4 Article

Can clade age alone explain the relationship between body size and diversity?

Journal

INTERFACE FOCUS
Volume 2, Issue 2, Pages 170-179

Publisher

ROYAL SOC
DOI: 10.1098/rsfs.2011.0075

Keywords

birth-death model; diversification; stochastic model; cladogenesis; maximum likelihood

Categories

Funding

  1. VIDI from NWO-ALW
  2. EPSRC [EP/F043112/1]
  3. Engineering and Physical Sciences Research Council [EP/F043112/1] Funding Source: researchfish
  4. EPSRC [EP/F043112/1] Funding Source: UKRI

Ask authors/readers for more resources

One of the most striking patterns observed among animals is that smaller-bodied taxa are generally much more diverse than larger-bodied taxa. This observation seems to be explained by the mere fact that smaller-bodied taxa tend to have an older evolutionary origin and have therefore had more time to diversify. A few studies, based on the prevailing null model of diversification (i.e. the stochastic constant-rate birth-death model), have suggested that this is indeed the correct explanation, and body-size dependence of speciation and extinction rates does not play a role. However, there are several potential shortcomings to these studies: a suboptimal statistical procedure and a relatively narrow range of body sizes in the analysed data. Here, we present a more coherent statistical approach, maximizing the likelihood of the constant-rate birth-death model with allometric scaling of speciation and extinction rates, given data on extant diversity, clade age and average body size in each clade. We applied our method to a dataset compiled from the literature that includes a wide range of Metazoan taxa (range from midges to elephants). We find that the higher diversity among small animals is indeed, partly, caused by higher clade age. However, it is also partly caused by the body-size dependence of speciation and extinction rates. We find that both the speciation rate and extinction rate decrease with body size such that the net diversification rate is close to 0. Even more interestingly, the allometric scaling exponent of speciation and extinction rates is approximately -0.25, which implies that the per generation speciation and extinction rates are independent of body size. This suggests that the observed relationship between diversity and body size pattern can be explained by clade age alone, but only if clade age is measured in generations rather than years. Thus, we argue that the most parsimonious explanation for the observation that smaller-bodied taxa are more diverse is that their evolutionary clock ticks faster.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available