4.5 Article

Deep learning with convolutional neural network for objective skill evaluation in robot-assisted surgery

Journal

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s11548-018-1860-1

Keywords

Surgical robotics; Surgical skill evaluation; Motion analysis; Deep learning; Convolutional neural network

Funding

  1. National Science Foundation (NSF) [1464432]
  2. Division Of Computer and Network Systems [1464432] Funding Source: National Science Foundation

Ask authors/readers for more resources

PurposeWith the advent of robot-assisted surgery, the role of data-driven approaches to integrate statistics and machine learning is growing rapidly with prominent interests in objective surgical skill assessment. However, most existing work requires translating robot motion kinematics into intermediate features or gesture segments that are expensive to extract, lack efficiency, and require significant domain-specific knowledge.MethodsWe propose an analytical deep learning framework for skill assessment in surgical training. A deep convolutional neural network is implemented to map multivariate time series data of the motion kinematics to individual skill levels.ResultsWe perform experiments on the public minimally invasive surgical robotic dataset, JHU-ISI Gesture and Skill Assessment Working Set (JIGSAWS). Our proposed learning model achieved competitive accuracies of 92.5%, 95.4%, and 91.3%, in the standard training tasks: Suturing, Needle-passing, and Knot-tying, respectively. Without the need of engineered features or carefully tuned gesture segmentation, our model can successfully decode skill information from raw motion profiles via end-to-end learning. Meanwhile, the proposed model is able to reliably interpret skills within a 1-3 second window, without needing an observation of entire training trial.ConclusionThis study highlights the potential of deep architectures for efficient online skill assessment in modern surgical training.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available