4.5 Article

Calbindin content and differential vulnerability of midbrain efferent doparninergic neurons in macaques

Journal

FRONTIERS IN NEUROANATOMY
Volume 8, Issue -, Pages -

Publisher

FRONTIERS MEDIA SA
DOI: 10.3389/fnana.2014.00146

Keywords

calbindin; Parkinson's disease; nigroextrastriatal pathway; neuronal tracers; neuroprotection; MPTP

Funding

  1. Ministerio de Economia y Competitividad [BFU2012-37907, SAF2008-03118-E]
  2. Eranet-Neuron
  3. CiberNed [CB06/05/0006]
  4. Departamento de Salud, Gobierno de Navarra
  5. Mutual Medica

Ask authors/readers for more resources

Calbindin (CB) is a calcium binding protein reported to protect dopaminergic neurons from degeneration. Although a direct link between CB content and differential vulnerability of dopaminergic neurons has long been accepted, factors other than CB have also been suggested, particularly those related to the dopamine transporter. Indeed, several studies have reported that CB levels are not causally related to the differential vulnerability of dopaminergic neurons against neurotoxins. Here we have used dual stains for tyrosine hydroxylase (TH) and CB in 3 control and 3 MPTP-treated monkeys to visualize dopaminergic neurons in the ventral tegmental area (VIA) and in the dorsal and ventral tiers of the substantia nigra pars compacta (SNcd and SNcy) co-expressing TH and CB. In control animals, the highest percentages of co localization were found in VIA (58.2%), followed by neurons located in the SNcd (34.7%). As expected, SNcy neurons lacked CB expression. In MPTP-treated animals, the percentage of CB-ir/TH-ir neurons in the VIA was similar to control monkeys (62.1%), whereas most of the few surviving neurons in the SNcd were CB-ir/TH-ir (88.6%). Next, we have elucidated the presence of CB within identified nigrostriatal and nigroextrastriatal midbrain dopaminergic projection neurons. For this purpose, two control monkeys received one injection of Fluoro-Gold into the caudate nucleus and one injection of cholera toxin (GIB) into the postcommissural putamen, whereas two more monkeys were injected with GIB into the internal division of the globus pallidus (GPi). As expected, all the nigrocaudate- and nigroputarnen-projecting neurons were TH-ir, although surprisingly, all of these nigrostriatal-projecting neurons were negative for CB. Furthermore, all the nigropallidal-projecting neurons co-expressed both TH and CB. In summary, although CB-ir dopaminergic neurons seem to be less prone to MPTPinduced degeneration, our data clearly demonstrated that these neurons are not giving rise to nigrostriatal projections and indeed CB-ir/TH-ir neurons only originate nigroextrastriatal projections.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available